Szemerédi’s Proof of Szemerédi’s Theorem

ثبت نشده
چکیده

In 1975, Szemerédi famously established that any set of integers of positive upper density contained arbitrarily long arithmetic progressions. The proof was extremely intricate but elementary, with the main tools needed being the van der Waerden theorem and a lemma now known as the Szemerédi regularity lemma, together with a delicate analysis (based ultimately on double counting arguments) of limiting densities of sets along multidimensional arithmetic progressions. In this note we present an arrangement of this proof that incorporates a number of notational and technical simplifications. Firstly, we replace the use of the regularity lemma by that of the simpler “weak regularity lemma” of Frieze and Kannan. Secondly, we extract the key inductive steps at the core of Szemerédi’s proof (referred to as “Lemma 5”, “Lemma 6”, and “Fact 12” in that paper) as stand-alone theorems that can be stated with less notational setup than in the original proof, in particular involving only (families of) one-dimensional arithmetic progressions, as opposed to multidimensional arithmetic progressions. Thirdly, we abstract the analysis of limiting densities along the (now one-dimensional) arithmetic progressions by introducing the notion of a family of arithmetic progressions with the “double counting property”. We also present a simplified version of the argument that is capable of establishing Roth’s theorem on arithmetic progressions of length three.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Szemerédi’s Theorem via Ergodic Theory

This essay investigates Furstenberg’s proof of Szemerédi’s Theorem. The necessary concepts and results from ergodic theory are introduced, including the Poincaré and Mean Ergodic Theorems which are proved in full. The Ergodic Decomposition Theorem is also discussed. Furstenberg’s Multiple Recurrence Theorem is then stated and shown to imply Szemerédi’s Theorem. The remainder of the essay concen...

متن کامل

On a Two–dimensional Analog of Szemerédi’s Theorem in Abelian Groups

Let G be a finite Abelian group and A ⊆ G×G be a set of cardinality at least |G|/(log log |G|)c, where c > 0 is an absolute constant. We prove that A contains a triple {(k, m), (k + d, m), (k, m+ d)}, where d 6= 0. This theorem is a two-dimensional generalization of Szemerédi’s theorem on arithmetic progressions.

متن کامل

Metastability and the Furstenberg-Zimmer Tower II: Polynomial and Multidimensional Szemerédi’s Theorem

The Furstenberg-Zimmer structure theorem for Z actions says that every measurepreserving system can be decomposed into a tower of primitive extensions. Furstenberg and Katznelson used this analysis to prove the multidimensional Szemerédi’s theorem, and Bergelson and Liebman further generalized to a polynomial Szemerédi’s theorem. Beleznay and Foreman showed that, in general, this tower can have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017